Telecom Paris ACCQ204, Coding Theory

SOLUTIONS TO ASSIGNMENT 4

Exercise 1. Show that if C,,, = [N, K, D], and C;;, = [n, k, d|, are linear block codes, then the
concatenated code C,,; o Cj, is a linear block code [nN, kK, D'], where D’ > dD.

Solution. That C,,; o C;, is a linear code if C,,; and C}, are linear follows from defining the
generator matrix of Cl,,; o C}, in terms of the generator matrices of C,,,; and C},.

It is easy to check that for the concatenated code, the codeword length is Nn and the message set
is of size at least ¢**. Next we show that the minimum distance is at least dD. Consider messages
my # may. Let the set of positions in which C,,;(m;) and C,,;(m2) differ be denoted 7". Then, by
the property of the outer code, we have

T = A(Cout(ma), Cour(m2)) = D.

For i € T, we have
A(Cin(cout(ml)i)a C’in(cout(mZ)i)) Z d.

Summing over all 7 yields
A(Cin(cout(ml))a Oin(cout (mZ))) Z dD
]

Exercise 2 (Zyablov bound). We will show a way to design an explicit code which achieves
positive rate and relative minimum distance with “low complexity.” By low complexity we mean
subexponential in the block length.

From Exercise 6 Assignment 2 there exists linear codes over [q] whose asymptotic rate r =

lim,, oo @ and relative minimum distance 6 = lim,, ., @ satisfy

r>1— Hy6).
1. Argue that to find a length n code whose rate and relative minimum distance satisfy
r>1—Hy(6)—¢
it takes ¢©*) time, as opposed to ¢°" time if the code has no structure.

2. Consider concatenating a linear code approaching the GV bound and a Reed Solomon code.
Show that such a construction yields an asymptotic rate

)
R > 1—
—i‘i%””( Hq—lu—r—s>>

for any € > 0, where § represents the relative minimum distance of the concatenated code and
where r denotes the rate of the inner code. This bound is called the Zyablov bound.
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3. Plot and compare the Zyablov bound and the Gilbert-Varshamov lower bounds (rate as a
function of relative minimum distance).

4. Argue that it is possibe to construct an explicit code achieving the Zyablov bound with time
complexity N'©1°8N) where A" denotes the length of the concatenated code.

Hence, although the Zyablov bound is lower than the GV bound, it is easier to construct a code
that achieves the Zyablov bound (by concatenation) than to construct a linear code achieving
the GV bound (which takes O(¢"") time).

Solution. 1. Given a k x n generator matrix of a linear code, it takes it takes O(g"kn) time to
generate each codeword (there are ¢* codewords and each of them takes O(kn) to be written
using the generator matrix). Therefore it takes O(¢*kn) to evaluate the minimum distance of
a linear code. Since there are ¢°*") possible matrices, it takes ¢°*™ O(¢"kn) = ¢°*™ to find
a code with the desired minimum distance

Follows from the fact that a linear code is characterized by its generator k£ X n g-ary matrix.

2. Let C, approach the GV bound, hence
Oin > Hq_l(l —r—e).
Let C,,; be a RS code therefore satisfying
dout =1 — R.
The concatenated code (R, d) thus satisfies
R=rR

and
6> (1—-R)H ' (1—r—e).

Expressing R as a function of § and r we get

Therefore we can achieve

R2r(1- g )

and maximizing over r yields the desired result.

3. The Zyablov bound (rate vs relative minimum distance) is lower than the GV bound for any
relative minimum distance within (0, 1/2).



4. There are ¢*"/" linear codes of rate » = k/n. Given such a code, it takes O(¢* (k2 /r)k/r) =
q°"® to generate all the codewords and compute their minimum weight. Therefore to find a
linear code with desired rate and minimum distance it takes

27‘
¢ "q%" = ¢

Since the linear code is used as an inner code we have k = log N where N = ¢! denotes the
size of the RS code. Hence

O(k?)

O(k?) _ ,0((log N)?) _ 7fO(log N)

q =4q

which is upper bounded by A©1eN) where N’ = nN = Nlog N denotes the length of the
concatenated code.
L]

Exercise 3 (Binary symmetric channel). Let us examine the performance of linear codes against
random errors. The binary symmetric channel with crossover probability p < 1/2 is defined by the
following process: Given a codeword ¢ € [, we generate a random vector y where y; is obtained
by flipping ¢; with probability p, independently of everything else. Equivalently,

y=c+z,

where z is a random vector whose components are independent and follow a Bernoulli(p)
distribution. Here y is called the received vector, and z the noise vector.

We will measure the performance of a code C C F of size 2" using the average probability of
error under a minimum distance decoder DEC(y) = arg minecc d(y, c):

_a«n:7%E§:gqayGC\@}:DE0@):cq

ceC

— QTLLR ZPzr[Hc’ € C\{c} : d(y,c') < d(y,c)],

ceC

where d(-, -) denotes Hamming distance. This is the average probability that there exists a codeword
different from c, that is closer to the received vector.

The goal of this and the next exercise is to show that for every e > 0 there exist linear codes of
rate R = 1 — H(p) — e whose probability of error is 27,

1. First, show that the Hamming distance between y and c is approximately np:
Prd(c,y) > np(1 4 ¢/2)] < 2790

Hint: Find the probability that z has Hamming weight greater than np(1 + €/2). You can use
Chernoff bound, or directly compute the probability and then use Stirling’s approximation.



2. Next, show that the probability of error can be bounded from above as P,(C) < PY + PP,
where

1
PO = % "Pr[ac € C\{c} : d(y.c) < np(1 +¢/2)]
e gnR z
ceC
and
P® = Prld(c,y) > np(1 + €/2)] < 27

3. Let us now find the probability of error for a random linear code obtained by choosing a
generator matrix GG uniformly. Show that for any two nonzero message vectors u; # usp, the
corresponding codeword u; G and u,G are statistically independent.

4. For fixed messages u; # us, show that
gr [d(ulG, wG +2z) <np(l+ 6/2)] < 27 n(1=H(p(+e/2))+o(1))
Hint: First compute Prg [d(ulG, x) < np(1+ 6/2)i| for a fixed x € F%. Then average over
z.
5. Use part 4 to show that if R < 1 — H(p) — ¢, then P = 2-am

6. Combine everything to prove that there exists a linear code with rate R > 1 — H(p) — € and
P. =o(1).

Solution. 1. Easy application of Chernoff bound. The Hamming weight can be written as a sum
of 1.1.d. indicator random variables

Wt(Z) = Z 1{Zi:1}.
i=1

The mean is equal to np. Using Chernoff bound,
Prld(c,y) > np(1 +¢/2)] < 27"/3,
2. The probability of error is
F(C)

_ QHLR > Pi3c’ € C\{c} : DEC(y) = ¢/

ceC

= Q,LLR Y PrEc € C\{c} :d(y, ) < d(y,0)ld(y, c) < np(1+e/2)] Prld(y, ) < np(1 +¢/2)]

ceC
4 QHLR > Pri3¢’ € C\{c} : dly, ) < dly,c)ld(y,¢) > np(L +¢/2)] Prld(y, ¢) > np(1 +¢/2)]
ceC
< QnLR Z Pzr[Elc’ e C\{c} : d(y,c") <np(1+¢/2)]
ceC

+ Pr[d(y,c) > np(1 + €¢/2)]



3. If X and Y are independent random variables over ] and X is uniformly distributed, then
X + Y is independent of Y and uniformly distributed. If u; # u,, then there is at least one
position where they differ. Therefore, u; G can be written as usG + x, where x is a uniform
random vector independent of u,G.

In a similar way, this can be extended to show thatif uy, ..., uy are linearly independent, then
u;G, ..., u;G are all statistically independent and uniformly distributed.

4. If u; # u,y, we know from the previous part that u; G and us G+z are statistically independent.
For any fixed x,

n
_ -n < —n(1—H(p(1+€/2))+o0(1))
Pér [d(ulG,x) < np(l+ 6/2)i| (np(l i 6/2)) 27" <2

Since this is true for every x, we have
Pr [d(ulG, wG +2z) <np(l+ 6/2)]

= ZPr [ (w1G,x) <np(l+¢/2)

<o T H (1) o(1)

wG + z = x| PrjusG + z = x|

5. We have shown that for fixed u; # us,
gr [d(UqG, wG +2z) <np(l+ 6/2)] < 9—n(1—H(p(1+¢/2))+o(1))

But
1
P = Z R L Pr [Elug #u:d(uG,uG +z) < np(l+ 6/2)]

uEFSR

Taking union bound over all uy € F3%\{u} gives
P® < gnRo=n(1=H(p(1+¢/2)+o(1)) _ g=n(e=o(1)
ifR=1—H(p) — e

6. Follows from parts 1-5.



