
Telecom Paris ACCQ204, Coding Theory

SOLUTIONS TO ASSIGNMENT 4
Exercise 1. Show that if Cout = [N,K,D]qk and Cin = [n, k, d]q are linear block codes, then the
concatenated code Cout ◦ Cin is a linear block code [nN, kK,D′]q where D′ ≥ dD.

Solution. That Cout ◦ Cin is a linear code if Cout and Cin are linear follows from defining the
generator matrix of Cout ◦ Cin in terms of the generator matrices of Cout and Cin.

It is easy to check that for the concatenated code, the codeword length isNn and the message set
is of size at least qkK . Next we show that the minimum distance is at least dD. Consider messages
m1 6= m2. Let the set of positions in which Cout(m1) and Cout(m2) differ be denoted T . Then, by
the property of the outer code, we have

|T | = ∆(Cout(m1), Cout(m2)) ≥ D.

For i ∈ T , we have
∆(Cin(Cout(m1)i), Cin(Cout(m2)i)) ≥ d.

Summing over all i yields

∆(Cin(Cout(m1)), Cin(Cout(m2))) ≥ dD.

Exercise 2 (Zyablov bound). We will show a way to design an explicit code which achieves
positive rate and relative minimum distance with “low complexity.” By low complexity we mean
subexponential in the block length.

From Exercise 6 Assignment 2 there exists linear codes over [q] whose asymptotic rate r =

limn→∞
k(n)
n

and relative minimum distance δ = limn→∞
d(n)
n

satisfy

r ≥ 1−Hq(δ).

1. Argue that to find a length n code whose rate and relative minimum distance satisfy

r ≥ 1−Hq(δ)− ε

it takes qO(kn) time, as opposed to qO(qkn) time if the code has no structure.

2. Consider concatenating a linear code approaching the GV bound and a Reed Solomon code.
Show that such a construction yields an asymptotic rate

R ≥ sup
r≥0

r

(
1− δ

H−1
q (1− r − ε)

)
for any ε > 0, where δ represents the relative minimum distance of the concatenated code and
where r denotes the rate of the inner code. This bound is called the Zyablov bound.
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3. Plot and compare the Zyablov bound and the Gilbert-Varshamov lower bounds (rate as a
function of relative minimum distance).

4. Argue that it is possibe to construct an explicit code achieving the Zyablov bound with time
complexity NO(logN ) where N denotes the length of the concatenated code.

Hence, although the Zyablov bound is lower than the GV bound, it is easier to construct a code
that achieves the Zyablov bound (by concatenation) than to construct a linear code achieving
the GV bound (which takes O(qN ) time).

Solution. 1. Given a k × n generator matrix of a linear code, it takes it takes O(qkkn) time to
generate each codeword (there are qk codewords and each of them takes O(kn) to be written
using the generator matrix). Therefore it takes O(qkkn) to evaluate the minimum distance of
a linear code. Since there are qO(kn) possible matrices, it takes qO(kn)O(qkkn) = qO(kn) to find
a code with the desired minimum distance

Follows from the fact that a linear code is characterized by its generator k × n q-ary matrix.

2. Let Cin approach the GV bound, hence

δin ≥ H−1
q (1− r − ε).

Let Cout be a RS code therefore satisfying

δout = 1−R.

The concatenated code (R, δ) thus satisfies

R = rR

and
δ ≥ (1−R)H−1

q (1− r − ε).

Expressing R as a function of δ and r we get

R ≥ 1− δ

H−1
q (1− r − ε)

.

Therefore we can achieve

R ≥ r

(
1− δ

H−1
q (1− r − ε)

)
and maximizing over r yields the desired result.

3. The Zyablov bound (rate vs relative minimum distance) is lower than the GV bound for any
relative minimum distance within (0, 1/2).
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4. There are qk2/r linear codes of rate r = k/n. Given such a code, it takes O(qk(k2/r)k/r) =
qO(k) to generate all the codewords and compute their minimum weight. Therefore to find a
linear code with desired rate and minimum distance it takes

qk
2/rqO(k) = qO(k2)

Since the linear code is used as an inner code we have k = logN where N = qt denotes the
size of the RS code. Hence

qO(k2) = qO((logN)2) = NO(logN)

which is upper bounded by NO(logN ) where N = nN = N logN denotes the length of the
concatenated code.

Exercise 3 (Binary symmetric channel). Let us examine the performance of linear codes against
random errors. The binary symmetric channel with crossover probability p < 1/2 is defined by the
following process: Given a codeword c ∈ Fn2 , we generate a random vector y where yi is obtained
by flipping ci with probability p, independently of everything else. Equivalently,

y = c + z,

where z is a random vector whose components are independent and follow a Bernoulli(p)
distribution. Here y is called the received vector, and z the noise vector.

We will measure the performance of a code C ⊂ Fn2 of size 2nR using the average probability of
error under a minimum distance decoder DEC(y) = arg minc∈C d(y, c):

Pe(C) =
1

2nR

∑
c∈C

Pr
z

[∃c′ ∈ C\{c} : DEC(y) = c′]

=
1

2nR

∑
c∈C

Pr
z

[∃c′ ∈ C\{c} : d(y, c′) ≤ d(y, c)],

where d(·, ·) denotes Hamming distance. This is the average probability that there exists a codeword
different from c, that is closer to the received vector.

The goal of this and the next exercise is to show that for every ε > 0 there exist linear codes of
rate R = 1−H(p)− ε whose probability of error is 2−Ω(n).

1. First, show that the Hamming distance between y and c is approximately np:

Pr[d(c,y) > np(1 + ε/2)] ≤ 2−Ω(n)

Hint: Find the probability that z has Hamming weight greater than np(1 + ε/2). You can use
Chernoff bound, or directly compute the probability and then use Stirling’s approximation.
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2. Next, show that the probability of error can be bounded from above as Pe(C) ≤ P
(1)
e + P

(2)
e ,

where
P (1)
e =

1

2nR

∑
c∈C

Pr
z

[∃c′ ∈ C\{c} : d(y, c′) ≤ np(1 + ε/2)]

and
P (2)
e = Pr[d(c,y) > np(1 + ε/2)] ≤ 2−Ω(n)

3. Let us now find the probability of error for a random linear code obtained by choosing a
generator matrix G uniformly. Show that for any two nonzero message vectors u1 6= u2, the
corresponding codeword u1G and u2G are statistically independent.

4. For fixed messages u1 6= u2, show that

Pr
G,z

[
d(u1G,u2G+ z) < np(1 + ε/2)

]
≤ 2−n(1−H(p(1+ε/2))+o(1))

Hint: First compute PrG

[
d(u1G,x) < np(1 + ε/2)

]
for a fixed x ∈ Fn2 . Then average over

z.

5. Use part 4 to show that if R < 1−H(p)− ε, then P (2)
e = 2−Ω(n).

6. Combine everything to prove that there exists a linear code with rate R ≥ 1 −H(p) − ε and
Pe = o(1).

Solution. 1. Easy application of Chernoff bound. The Hamming weight can be written as a sum
of i.i.d. indicator random variables

wt(z) =
n∑
i=1

1{zi=1}.

The mean is equal to np. Using Chernoff bound,

Pr[d(c,y) > np(1 + ε/2)] ≤ 2−ε
2n/3.

2. The probability of error is

Pe(C)

=
1

2nR

∑
c∈C

Pr
z

[∃c′ ∈ C\{c} : DEC(y) = c′]

=
1

2nR

∑
c∈C

Pr
z

[∃c′ ∈ C\{c} : d(y, c′) ≤ d(y, c)|d(y, c) ≤ np(1 + ε/2)] Pr[d(y, c) ≤ np(1 + ε/2)]

+
1

2nR

∑
c∈C

Pr
z

[∃c′ ∈ C\{c} : d(y, c′) ≤ d(y, c)|d(y, c) > np(1 + ε/2)] Pr[d(y, c) > np(1 + ε/2)]

≤ 1

2nR

∑
c∈C

Pr
z

[∃c′ ∈ C\{c} : d(y, c′) ≤ np(1 + ε/2)]

+ Pr[d(y, c) > np(1 + ε/2)]
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3. If X and Y are independent random variables over Fn2 and X is uniformly distributed, then
X + Y is independent of Y and uniformly distributed. If u1 6= u2, then there is at least one
position where they differ. Therefore, u1G can be written as u2G + x, where x is a uniform
random vector independent of u2G.

In a similar way, this can be extended to show that if u1, . . . ,uk are linearly independent, then
u1G, . . . ,ukG are all statistically independent and uniformly distributed.

4. If u1 6= u2, we know from the previous part that u1G and u2G+z are statistically independent.
For any fixed x,

Pr
G

[
d(u1G,x) < np(1 + ε/2)

]
=

(
n

np(1 + ε/2)

)
2−n ≤ 2−n(1−H(p(1+ε/2))+o(1))

Since this is true for every x, we have

Pr
G,z

[
d(u1G,u2G+ z) < np(1 + ε/2)

]
=
∑
x

Pr
G

[
d(u1G,x) < np(1 + ε/2)

∣∣∣u2G+ z = x] Pr[u2G+ z = x]

≤ 2−n(1−H(p(1+ε/2))+o(1))

5. We have shown that for fixed u1 6= u2,

Pr
G,z

[
d(u1G,u2G+ z) < np(1 + ε/2)

]
≤ 2−n(1−H(p(1+ε/2))+o(1))

But
P (2)
e =

∑
u∈FnR

2

1

2nR
Pr
G,z

[
∃u2 6= u : d(u1G,u2G+ z) < np(1 + ε/2)

]
Taking union bound over all u2 ∈ FnR2 \{u} gives

P
(2)
2 ≤ 2nR2−n(1−H(p(1+ε/2))+o(1)) = 2−n(ε−o(1))

if R = 1−H(p)− ε.

6. Follows from parts 1-5.
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