Teacher: Aslan Tchamkerten

Telecom Paris Telecom 202b, Coding Theory
Teacher: Aslan Tchamkerten November 2021

ASSIGNMENT 3 - SOLUTIONS

Exercise 1. Suppose we are in \mathbb{F}_2 . Find

- 1. $gcd(x^4 + x^2 + 1, x^2 + 1)$ 2. $gcd(x^6 + x^5 + x^3 + x + 1, x^4 + x^2 + 1)$ 3. $gcd(x^6 + x^5 + x^3 + x + 1, x^4 + x^3 + x + 1)$ *Solution.* 1. 1 2. $x^4 + x^2 + 1$
	- 3. $x^2 + x + 1$

 \Box

 \Box

Exercise 2. Show that a Reed-Solomon code with 1 message symbol and n codeword symbols is an n times repetition code.

Solution. If we have a 1 message symbol, encoding polynomials are of degree zero (i.e., are constants) and evaluated n times. \Box

Exercise 3. Construct an $RS(n = 4, k = 2)$ code. For the construction you may want to consider the irreducible polynomial $X^2 + X + 1$ over \mathbb{F}_2 and the evaluation points (to be justified) $\alpha_1 = 0$, $\alpha_2 = 1, \, \alpha_3 = x, \, \alpha_4 = x + 1 = x^2.$

Solution. Since $n = 4$ we need a base field with (at least) 4 elements. So let's choose the base field $\mathbb{F}_4 = \mathbb{F}_2[X]/(X^2 + X + 1)$ whose elements are thus

$$
\{0, 1, x, x + 1 = x^2\}.
$$

Since $k = 2$, the message polynomials are of degree $k - 1 = 1$ and can be written as $f_0 + f_1x$ with $f_0, f_1 \in \mathbb{F}_4$. Thus the mapping between information symbols and codewords is given by

$$
(f_0, f_1) \to (f_0 + f_1 \alpha_1, f_0 + f_1 \alpha_2, f_0 + f_1 \alpha_3, f_0 + f_1 \alpha_4).
$$

The full mapping is thus

Exercise 4. Consider the following mapping from $(\mathbb{F}_q)^k$ to $(\mathbb{F}_q)^{k+1}$. Let $(f_0, f_1, \ldots, f_{k-1})$ be any k-tuple over \mathbb{F}_q , and define the polynomial $f(x) = f_0 + f_1x + \ldots + f_{k-1}x^{k-1}$ of degree less than k. Map $(f_0, f_1, ..., f_{k-1})$ to the $(q + 1)$ -tuple $(\{f(\alpha_i), \alpha_i \in \mathbb{F}_q\}, f_{k-1})$ —i.e., to the RS codeword corresponding to $f(x)$, plus an additional component equal to f_{k-1} .

Show that the $q^k(q+1)$ -tuples generated by this mapping as the polynomial $f(z)$ ranges over all q^k polynomials over \mathbb{F}_q of degree $\lt k$ form a linear $(n = q + 1, k, d = n - k + 1)$ MDS code over \mathbb{F}_q . [Hint: $f(x)$ has degree $\lt k - 1$ if and only if $f_{k-1} = 0$.]

Solution. The code has length $n = q + 1$. It is linear because the sum of codewords corresponding to $f(x)$ and $g(x)$ is the codeword corresponding to $f(x) + g(x)$, another polynomial of degree less than k . Its dimension is k because no polynomial other than the zero polynomial maps to the zero $(q + 1)$ -tuple.

To prove that the minimum weight of any nonzero codeword is $d = n - k + 1$, use the hint and consider the two possible cases for f_{k-1} :

- If $f_{k-1} \neq 0$, then $\deg f(x) = k 1$. By the fundamental theorem of algebra, the RS codeword corresponding to $f(x)$ has at most $k - 1$ zeroes. Moreover, the f_{k-1} component is nonzero. Thus the number of nonzero components in the code $(q + 1)$ -tuple is at least $q - (k - 1) + 1 =$ $n - k + 1$.
- If $f_{k-1} = 0$ and $f(x) = 0$, then $\deg f(x) \leq k 2$. By the fundamental theorem of algebra, the RS codeword corresponding to $f(x)$ has at most $k - 2$ zeroes, so the number of nonzero components in the code $(q + 1)$ -tuple is at least $q - (k - 2) = n - k + 1$.

 \Box

Exercise 5. Suppose we want to correct bursts of errors, that is error patterns that affect a certain number of consecutive bits. Suppose we are given an [n, k] RS code over \mathbb{F}_{2^t} . Show that this code yields a binary code which can correct any burst of $(\frac{n - k}{2 - 1)t}$ bits.

Solution. Map each 2^t symbols of \mathbb{F}_{2^t} into t bits. The code can correct up to $(d-1)/2$ symbol errors which translates into an error correction capability of $\left(\frac{d - 1}{2} - 1\right)t$ consecutive bits $\left(\frac{d-1}{2t}$ if the burst of errors starts at the beginning of a symbol). \Box