Telecom Paris Teacher: Aslan Tchamkerten Telecom 202b, Coding Theory November 2021

Assignment 3 - Solutions

Exercise 1. Suppose we are in \mathbb{F}_2 . Find

1. $gcd(x^4 + x^2 + 1, x^2 + 1)$ 2. $gcd(x^6 + x^5 + x^3 + x + 1, x^4 + x^2 + 1)$ 3. $gcd(x^6 + x^5 + x^3 + x + 1, x^4 + x^3 + x + 1)$ Solution. 1. 1 2. $x^4 + x^2 + 1$

Exercise 2. Show that a Reed-Solomon code with 1 message symbol and *n* codeword symbols is an *n* times repetition code.

Solution. If we have a 1 message symbol, encoding polynomials are of degree zero (i.e., are constants) and evaluated n times.

Exercise 3. Construct an RS(n = 4, k = 2) code. For the construction you may want to consider the irreducible polynomial $X^2 + X + 1$ over \mathbb{F}_2 and the evaluation points (to be justified) $\alpha_1 = 0$, $\alpha_2 = 1$, $\alpha_3 = x$, $\alpha_4 = x + 1 = x^2$.

Solution. Since n = 4 we need a base field with (at least) 4 elements. So let's choose the base field $\mathbb{F}_4 = \mathbb{F}_2[X]/(X^2 + X + 1)$ whose elements are thus

$$\{0, 1, x, x+1 = x^2\}.$$

Since k = 2, the message polynomials are of degree k - 1 = 1 and can be written as $f_0 + f_1 x$ with $f_0, f_1 \in \mathbb{F}_4$. Thus the mapping between information symbols and codewords is given by

$$(f_0, f_1) \to (f_0 + f_1 \alpha_1, f_0 + f_1 \alpha_2, f_0 + f_1 \alpha_3, f_0 + f_1 \alpha_4).$$

The full mapping is thus

3. $x^2 + x + 1$

0	$\begin{array}{c} 0 \\ 1 \\ x \end{array}$	\rightarrow (0	1	$0 \\ x \\ x+1$	x + 1)	$egin{array}{c} x \ x \ x \ x \end{array}$	1		(x) (x) (x) (x)	x + 1	0	1)
$\begin{array}{c} 0 \\ 1 \end{array}$	$\begin{array}{c} x+1 \\ 0 \end{array}$	\rightarrow (0 \rightarrow (1	$\begin{array}{c} x+1 \\ 1 \end{array}$	1 1	$\begin{pmatrix} x \\ 1 \end{pmatrix}$	$x \\ x+1$	x + 1 0	$\stackrel{\rightarrow}{\rightarrow}$	(x) (x+1)	$\begin{array}{c}1\\x+1\end{array}$	$\begin{array}{c} x+1\\ x+1 \end{array}$	
1	$ \begin{array}{c} 1\\ x\\ x+1 \end{array} $		x + 1	$\begin{array}{c} x+1\\ x\\ 0 \end{array}$	0)	$ \begin{array}{c} x+1\\ x+1\\ x+1\\ x+1 \end{array} $	x	\rightarrow	(x+1) (x+1) (x+1)	1	0	x)

Exercise 4. Consider the following mapping from $(\mathbb{F}_q)^k$ to $(\mathbb{F}_q)^{k+1}$. Let $(f_0, f_1, \ldots, f_{k-1})$ be any k-tuple over \mathbb{F}_q , and define the polynomial $f(x) = f_0 + f_1 x + \ldots + f_{k-1} x^{k-1}$ of degree less than k. Map $(f_0, f_1, \ldots, f_{k-1})$ to the (q + 1)-tuple $(\{f(\alpha_i), \alpha_i \in \mathbb{F}_q\}, f_{k-1})$ —i.e., to the RS codeword corresponding to f(x), plus an additional component equal to f_{k-1} .

Show that the $q^k(q+1)$ -tuples generated by this mapping as the polynomial f(z) ranges over all q^k polynomials over \mathbb{F}_q of degree < k form a linear (n = q + 1, k, d = n - k + 1) MDS code over \mathbb{F}_q . [Hint: f(x) has degree < k - 1 if and only if $f_{k-1} = 0$.]

Solution. The code has length n = q + 1. It is linear because the sum of codewords corresponding to f(x) and g(x) is the codeword corresponding to f(x) + g(x), another polynomial of degree less than k. Its dimension is k because no polynomial other than the zero polynomial maps to the zero (q + 1)-tuple.

To prove that the minimum weight of any nonzero codeword is d = n - k + 1, use the hint and consider the two possible cases for f_{k-1} :

- If f_{k-1} ≠ 0, then deg f(x) = k 1. By the fundamental theorem of algebra, the RS codeword corresponding to f(x) has at most k 1 zeroes. Moreover, the f_{k-1} component is nonzero. Thus the number of nonzero components in the code (q + 1)-tuple is at least q (k 1) + 1 = n k + 1.
- If $f_{k-1} = 0$ and f(x) = 0, then deg $f(x) \le k 2$. By the fundamental theorem of algebra, the RS codeword corresponding to f(x) has at most k 2 zeroes, so the number of nonzero components in the code (q + 1)-tuple is at least q (k 2) = n k + 1.

Exercise 5. Suppose we want to correct bursts of errors, that is error patterns that affect a certain number of consecutive bits. Suppose we are given an [n, k] RS code over \mathbb{F}_{2^t} . Show that this code yields a binary code which can correct any burst of (|(n - k)|/2 - 1)t bits.

Solution. Map each 2^t symbols of \mathbb{F}_{2^t} into t bits. The code can correct up to (d-1)/2 symbol errors which translates into an error correction capability of $(\lfloor (d-1)/2 \rfloor - 1)t$ consecutive bits $(\lfloor (d-1)/2 \rfloor t$ if the burst of errors starts at the beginning of a symbol).